
Learning Goals: Alternating Series

• Definition of an Alternating Series.

• Learn to apply the Alternating Series Test.

• Learn to calculate an upper bound for the error when estimating with a partial sum of an alter-
nating series.

• Use the alternating series estimation theorem in conjunction with your knowledge of power series
to control errors in estimation.

• Dirichlet Test with sin(n) and cos(n).
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Alternating Series: Stewart Section 11.5

Definition A series of the form
∑∞

n=1(−1)nbn or
∑∞

n=1(−1)n+1bn, where bn > 0 for all n, is called
an alternating series, because the terms alternate between positive and negative values.

We have already looked at an example of such a series in detail, namely the alternating harmonic series
∞∑

n=1

(−1)n−1 1

n
. We proved that this series converges by showing that the even partial sums s2n form a

monotone bounded sequence and thus converge to a limit γ. We also showed that the odd partial sums
S2n+1 must converge to the same limit γ and thus the series converges. The proof given applies to a
more general class of alternating series which we will describe below. Further examples of alternating
series are:

Example
∞∑

n=1

(−1)n

n
= −1 +

1

2
− 1

3
+

1

4
− 1

5
+ . . .

∞∑
n=1

(−1)n+1 n

2n+ 1
=

1

3
− 2

5
+

3

7
− 4

9
+ . . .

Note We can use the divergence test to show that the second series above diverges, since

lim
n→∞

(−1)n+1 n

2n+ 1
does not exist

We have the following test for such alternating series:

Alternating Series test If the alternating series

∞∑
n=1

(−1)n−1bn = b1 − b2 + b3 − b4 + . . . bn > 0

satisfies
(i) lim

n→∞
bn = 0

(ii) bn+1 ≤ bn for all n

then the series converges.

we see from the graph below that because the values of bn are decreasing, the partial sums of the series
cluster about some point in the interval [0, b1].

Click on the blue link to see a full proof similar to that given for the alternating harmonic series at the
end of the notes.
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Notes

• A similar theorem applies to the series
∑∞

i=1(−1)nbn.

• Also we really only need bn+1 ≤ bn for all n > N for some N , since a finite number of terms do
not change whether a series converges or not.

• Recall that if we have a differentiable function f(x), with f(n) = bn, then we can use its
derivative to check if terms are decreasing.

• When applying this theorem, if we find that limn→∞ bn 6= 0 we can conclude immediately that
the series diverges using the divergence test.

Example Test the following series for convergence

∞∑
n=1

(−1)n 1

n
,

∞∑
n=1

(−1)n n

n2 + 1
,

∞∑
n=1

(−1)n 2n2

n2 + 1
,

∞∑
n=1

(−1)n 1

n!

∞∑
n=1

(−1)n lnn

n2
,

∞∑
n=1

(−1)n cos

(
π

n

)
Note: that an alternating series may converge whilst the sum of the absolute values diverges. Recall
that this is called Conditional convergence. In particular the alternating harmonic series above is
conditionally convergent.
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Estimating the Error

Suppose
∑∞

i=1(−1)n−1bn, bn > 0, converges to s. Recall that we can use the partial sum sn = b1 −
b2 + · · · + (−1)n−1bn to estimate the sum of the series, s. If the series satisfies the conditions for
the Alternating series test, we have the following simple estimate of the size of the error in our
approximation |Rn| = |s− sn|.
(Rn here stands for the remainder when we subtract the n th partial sum from the sum of the series. )

Alternating Series Estimation Theorem If s =
∑

(−1)n−1bn, bn > 0 is the sum of an
alternating series that satisfies

(i) bn+1 < bn for all n

(ii) lim
n→∞

bn = 0

then
|Rn| = |s− sn| ≤ bn+1.

click on the blue link to see the proof included at the end of the notes.

Example Find a partial sum approximation the sum of the series
∑

(−1)n 1
n

where the error of
approximation is less than .01 = 10−2.

Example (a) Write down the Taylor series expansion of cos(x) about 0.

(b) Use part (a) to find the Taylor series expansion of cos(x2) about 0.
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(c) Use part (b) to express

∫ 0.1

0

cos(x2) dx as a series.

(d) Use the alternating series estimation theorem to estimate

∫ 0.1

0

cos(x2) dx with a maximum error of

10−8.

Click on the blue link to find solutions to a similar old exam question which uses the alternating series
estimation theorem in conjunction with power series at the end of the lecture.
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Extras
Dirichlet’s Test

The alternating series test is itself a special case of a more general test due to Dirichlet. We will give
another special case of Dirichlet’s test below but we do not give a proof since it is reasonably complicated
and is slightly beyond the scope of this course. This special case is just like the alternating series test
with (−1)n replaced by sin(x) or cos(x).

Another Special Case of Dirichlet’s Test: If the series

∞∑
n=1

sin(n)bn = sin(1)b1 + sin(2)b2 + sin(3)b3 + sin(4)b4 + . . . bn > 0

satisfies
(i) lim

n→∞
bn = 0

(ii) bn+1 ≤ bn for all n

then the series converges.

The same result holds with sin(n) replaced by cos(n) above.
Note In this special case of Dirichlet’s Test, it is more difficult to show divergence if limn→∞ bn 6= 0,
nevertheless the result still holds.

Example Test the following series for convergence

∞∑
n=1

sin(n)

n
,

∞∑
n=1

cos(n)

n2 + 1
,

∞∑
n=1

sin(n)

n!

∞∑
n=1

cos(n)
lnn

n2
.
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Proof of the Alternating Series Test

s2 = b1 − b2 ≥ 0 since b2 < b1

s4 = s2 + (b3 − b4) ≥ s2 since b4 < b3

...

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2

Hence the sequence of even partial sums is increasing:

s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ . . .

Also we have
s2n = b1 − (b2 − b3)− (b4 − b5)− · · · − (b2n−2 − b2n−1)− b2n ≤ b1.

Hence the sequence of even partial sums is increasing and bounded and thus converges.. Therefore
limn→∞ sn = s for some s.

This takes care of the even partial sums, now we deal with the odd partial sums.
We have s2n+1 = s2n + b2n+1, hence limn→∞ s2n+1 = limn→∞(s2n) + limn→∞ b2n+1) = limn→∞(s2n) = s,
since by assumption (ii), limn→∞ b2n+1 = 0.

Thus the limits of the entire sequence of partial sums is s and the series converges.

back to lecture

Note: that in the proof above we see that if s =
∑∞

n=1(−1)n−1bn, with then

s2n ≤ s ≤ s2n+1

because s2n+1 = s2n + b2n+1 and s = s2n + b2n+1 − (b2n+2 − b2n+3)− .... < s2n+1. Similarly in the proof
above we see that

s2n−1 ≥ s ≥ s2n.

Proof of Alternating Series Estimation Theorem From our note above, we have that the sum
of the series, s, lies between any two consecutive sums, and hence

|Rn| = |s− sn| ≤ |sn+1 − sn| = bn+1.

back to lecture
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Old Exam Question

Part (a) Give the Taylor series expansion for the antiderivative

F (x) =

∫
cos (
√
x) dx

about 0 (McLaurin Series) where F (0) = 0.
Hint: Use your knowledge of a well known series.
Solution to part (a): We know that the Taylor series expansion for cos(x) around x = 0 is cos(x) =∑∞

n=0
(−1)nx2n

(2n)!
, which has radius of convergence R = ∞. Plugging in

√
x we obtain cos(

√
x) =∑∞

n=0
(−1)nxn

(2n)!
which is valid for all x ≥ 0. Finally, we compute the indefinite integral

F (x) =

∫ ∞∑
n=0

(−1)nxn

(2n)!
dx =

∞∑
n=0

(−1)n

(2n)!

∫
xndx

=
∞∑

n=0

(−1)n

(2n)!

xn+1

n+ 1
+ C

Plugging in x = 0 we obtain

F (0) =
∞∑

n=0

(−1)n

(2n)!

0n+1

n+ 1
+ C = 0 + C = C.

So, C = 0, and

F (x) =
∞∑

n=0

(−1)n

(2n)!

xn+1

n+ 1
.

Part (b) Use part (a) to find an expression for the definite integral∫ 1

0

cos(
√
x) dx

as a sum of an infinite series.
Solution to part (b): By the Fundamental Theorem of Calculus we know∫ 1

0

cos(
√
x) dx = F (1)− F (0)

=
∞∑

n=0

(−1)n

(2n)!
· 1n+1

n+ 1
− 0

=
∞∑

n=0

(−1)n

(2n)!
· 1

n+ 1

Part (c) Use the alternating series estimation theorem to estimate the value of the above definite
integral so that the error of estimation is less than 1

100
.

(you may write your answer as a sum of fractions).
Solution to Part (c): The series in part (b) is of the form

∑∞
n=0(−1)nbn with bn = 1

(2n)!(n+1)
. We

check that this series satisfies the conditions for the Alternating Series Estimation Theorem
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• bn+1 = 1
(2(n+1))!(n+2)

≤ 1
(2n)!(n+1)

= bn holds for all n ≥ 0,

• lim
n→∞

bn = lim
n→∞

1

(2n)!(n+ 1)
= 0.

Thus |Rn| = |S − Sn| ≤ bn+1. We need to find the value of n which makes bn+1 <
1

100
. We compute:

b0 = 1

b1 =
1

2!(2)
=

1

4

b2 =
1

4!(3)
=

1

72

b3 =
1

6!(4)
=

1

720 · 4
<

1

100

So E2 = |S−S2| ≤ b3 <
1

100
. So S2 gives approximation of the integral which is within 1

100
of the actual

value. Finally, we compute our estimate for the integral,∫ 1

0

cos(
√
x)dx ≈ S2 = b0 − b1 + b2

= 1− 1

4
+

1

72

=
55

72
.
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